Empirical Bayes and resampling based multiple testing procedure controlling tail probability of the proportion of false positives.
نویسندگان
چکیده
Simultaneously testing a collection of null hypotheses about a data generating distribution based on a sample of independent and identically distributed observations is a fundamental and important statistical problem involving many applications. In this article we propose a new re-sampling based multiple testing procedure asymptotically controlling the probability that the proportion of false positives among the set of rejections exceeds q at level alpha, where q and alpha are user supplied numbers. The procedure involves 1) specifying a conditional distribution for a guessed set of true null hypotheses, given the data, which asymptotically is degenerate at the true set of null hypotheses, and 2) specifying a generally valid null distribution for the vector of test-statistics proposed in Pollard & van der Laan (2003), and generalized in our subsequent article Dudoit, van der Laan, & Pollard (2004), van der Laan, Dudoit, & Pollard (2004), and van der Laan, Dudoit, & Pollard (2004b). Ingredient 1) is established by fitting the empirical Bayes two component mixture model (Efron (2001b)) to the data to obtain an upper bound for marginal posterior probabilities of the null being true, given the data. We establish the finite sample rational behind our proposal, and prove that this new multiple testing procedure asymptotically controls the wished tail probability for the proportion of false positives under general data generating distributions. In addition, we provide simulation studies establishing that this method is generally more powerful in finite samples than our previously proposed augmentation multiple testing procedure (van der Laan, Dudoit, & Pollard (2004b)) and competing procedures from the literature. Finally, we illustrate our methodology with a data analysis.
منابع مشابه
Resampling-based empirical Bayes multiple testing procedures for controlling generalized tail probability and expected value error rates: focus on the false discovery rate and simulation study.
This article proposes resampling-based empirical Bayes multiple testing procedures for controlling a broad class of Type I error rates, defined as generalized tail probability (gTP) error rates, gTP (q,g) = Pr(g (V(n),S(n)) > q), and generalized expected value (gEV) error rates, gEV (g) = E [g (V(n),S(n))], for arbitrary functions g (V(n),S(n)) of the numbers of false positives V(n) and true po...
متن کاملPackage 'multtest' Title Resampling-based Multiple Hypothesis Testing
Description Non-parametric bootstrap and permutation resampling-based multiple testing procedures (including empirical Bayes methods) for controlling the family-wise error rate (FWER), generalized family-wise error rate (gFWER), tail probability of the proportion of false positives (TPPFP), and false discovery rate (FDR). Several choices of bootstrap-based null distribution are implemented (cen...
متن کاملStatistical Applications in Genetics and Molecular Biology
Simultaneously testing a collection of null hypotheses about a data generating distribution based on a sample of independent and identically distributed observations is a fundamental and important statistical problem involving many applications. In this article we propose a new resampling based multiple testing procedure asymptotically controlling the probability that the proportion of false po...
متن کاملPackage ‘ multtest ’
Description Non-parametric bootstrap and permutation resampling-based multiple testing procedures (including empirical Bayes methods) for controlling the family-wise error rate (FWER), generalized family-wise error rate (gFWER), tail probability of the proportion of false positives (TPPFP), and false discovery rate (FDR). Several choices of bootstrap-based null distribution are implemented (cen...
متن کاملResampling-Based Empirical Bayes Multiple Testing Procedures for Controlling Generalized Tail Probability and Expected Value Error Rates: Focus on the False Discovery Rate and Simulation Study BIMJ.200711132 Response to February 13, 2008 Reports
We would like to thank the Guest Editor and Referee for their thoughtful and constructive reports. As detailed in the point-by-point reply below, we have attempted to address all issues raised in the reports. The Guest Editor and Referee comments are indicated using an italic font; our replies are in plain font. We have created a website companion (temporary URL: www.stat.berkeley. edu/~houston...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistical applications in genetics and molecular biology
دوره 4 شماره
صفحات -
تاریخ انتشار 2005